Sub.Code: 216

NEB-GRADE XII Mathematics Model Question [2077(2020)]

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Time: 1.30 hrs. Full Marks: 40

Note: Group A is compulsory and select another one Group either B or C.

Group 'A'

Attempt all the questions.

1. a) Show that
$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots = 1$$
. (2)

- b) Find the ratio in which the line joining the points P(-2,4,7) and Q(3,-5,-1) is divided by the ZX- plane. (2)
- c) If $\vec{a} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = \hat{i} \hat{j} + \hat{k}$, find the projection of \vec{b} on \vec{a} . (2)
- 2. a) Solve: $\frac{dy}{dx} + \frac{1 + \cos 2y}{1 \cos 2x} = 0$. (2)
 - b) Calculate the mean deviation from mean of the data: (2) 3, 5, 9, 11, 7, 6.
- 3. Define abelian group. If (G, *) is an abelian group, prove that $(a * b)^{-1} = a^{-1} * b^{-1} V a, b \in G$. (4)
- 4. Find the condition that a line ax + by + c = 0 may be normal to the parabola $y^2 = 4mx$. (4)

Or

Find the vertices and foci of the ellipse $\frac{(x+2)^2}{16} + \frac{(y-5)^2}{9} = 1$.

Contd...

216 (2)

5. Evaluate:
$$\int \frac{dx}{1 + \sin x + \cos x}$$
. (4)

6. From definition, find the derivative of $e^{tan.x}$. (6)

Or

State Mean value theorem. Verify it for the function $f(x) = 2x^2 - 10x + 29$ in [2, 7].

Group 'B'

- 7. A ball is thrown vertically upwards at a rate of 40ms^{-1} . Find the time taken to attain the maximum height. $(g = 10 \text{ms}^{-2})$ (2)
- 8. A body slides down from rest from the top of a smooth plane of height 44.1 m and inclination 30° with the horizon. Divide the plane into three parts so that the body at the top of the plane may describe each part in equal interval of time. $(g = 9.8 ms^{-2})$ (4)

Or

A stone is dropped into a well and the sound of its striking the water is heard in $4\frac{2}{9}$ seconds. If the velocity of the sound is $352.8ms^{-1}$, find the depth of the well. $(g=9.8ms^{-2})$

9. Deduce the resultant of two parallel forces. (6)

Or

Define Moment geometrically. Also state and prove the Varignon's theorem for two intersecting forces.

Group 'C'

- 10. Examine whether the system of equations 3x + 12y z = 28, x + 4y + 7z = 2 and 10x + 4y 2z = 20 is diagonally dominant. (2)
- 11. Use the **Bisection** method to find solutions accurate to within 10^{-2} for $x^3 7x^2 + 14x 6 = 0$ in (0, 1).
- 12. By Simplex method maximize

$$F = 15x_1 + 10x_2$$
 subject to $2x_1 + x_2 \le 10$, $x_1 + 3x_2 \le 10$; $x_1, x_2 \ge 0$. (6)